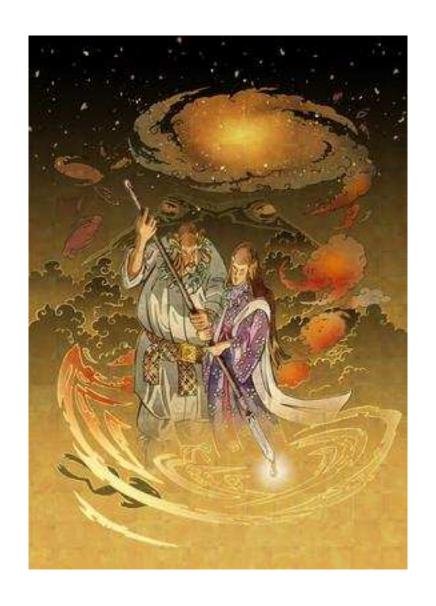
Search for GMSB SUSY in diphoton events with large missing ET

Yann Coadou

for the DØ Collaboration

SUSY 2004, Tsukuba, Japan Session 1: Higgs and SUSY particles

18 June 2004

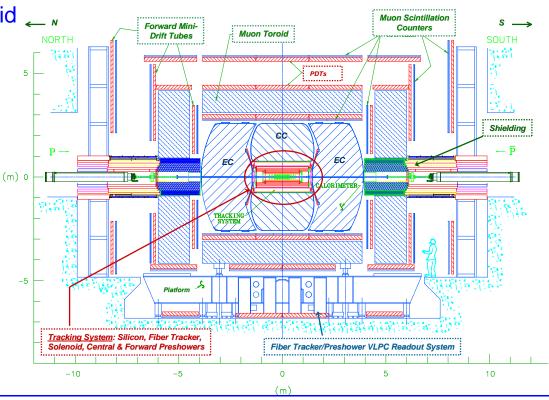

DEPARTMENT OF PHYSICS

SIMON FRASER UNIVERSITY, CANADA

Outline

- ☆ DØ detector and data sample
- $\ \ \, \ \ \, \ \ \, \ \ \,$ GMSB and $\gamma\gamma+\not\!\!E_{\rm T}$ final state
- ☆ Event selection
- ☆ Background estimation
- ☆ Limit calculation
- ☆ Summary

Tevatron Run II and the DØ detector


Fermilab Tevatron: $p\bar{p}$ collider, 1.96 TeV center-of-mass energy, bunch crossing every 396 ns, current instantaneous luminosity $0.7\cdot10^{32} \text{cm}^{-2}\text{s}^{-1}$

☆ DØ upgrade:

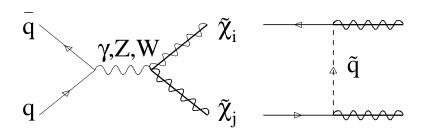
2 T superconducting solenoid ____

silicon detector

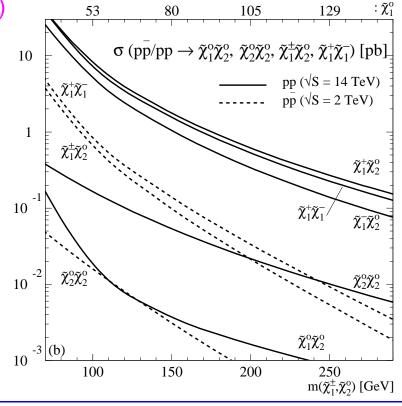
- fiber tracker
- preshower detector
- upgraded muon system
- new calorimeter electronics
- upgraded trigger and DAQ

Luminosity and data sample

- This analysis: data collected between April 2002 and October 2003
- ☆ Integrated luminosity: 185 pb⁻¹


Gauge mediated Supersymmetry breaking (GMSB)

- One of the possible scenarios of SUSY breaking, as gravity and anomaly mediated alternatives (SUGRA and AMSB)
- \ref{SUSY} breaking propagated through gauge interactions via new messenger fields at scale $\Lambda \ll {\rm M_{Planck}}$
- Gravitino (\tilde{G}) is the lightest supersymmetric particle (LSP): $\mathcal{O}(\text{10}^{-2})~\text{eV} < m_{\tilde{G}} < \text{1 keV}$
- Next-to-lightest particle (NLSP) is either the lightest neutralino or a charged slepton
- ${\bf \rat T}$ If the NLSP is the neutralino: $\tilde{\chi}_1^0 \to \gamma \tilde{G}$
- Minimal set of parameters: scale Λ , messenger mass scale M_m , number of messenger fields N_5 , ratio of Higgs v.e.v. $\tan \beta$, sign of Higgs mass term μ

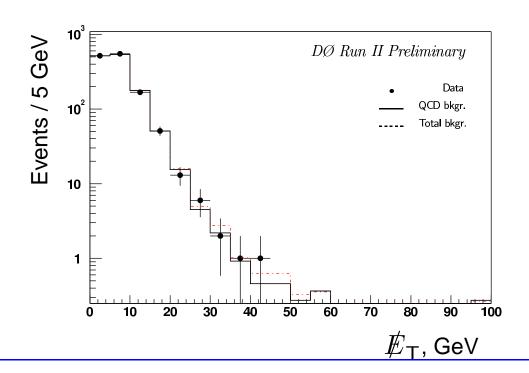

Production and final state

- A Mostly produced in $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ and $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ decays
- $\mbox{$$
- ⇒ distinctive experimental signature (assuming a short neutralino lifetime):

two photons and missing transverse energy ($\rlap/E_{
m T}$)

Beenakker et al PRL 83, 3780 (1999)

Inclusive search for $\gamma\gamma+ ot E_{\mathsf{T}}$

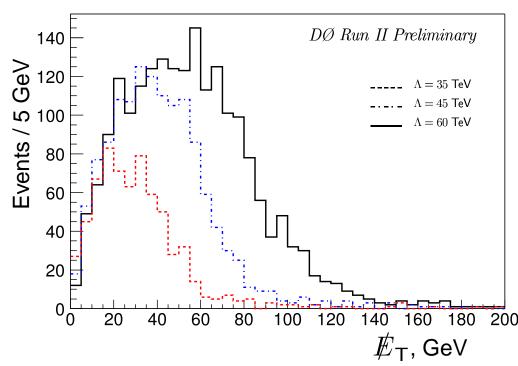

- Use single and di-electromagnetic triggers (97% efficient)
- \red Select events with 2 photons in Central Calorimeter ($|\eta_{\gamma}| <$ 1.1):
 - satisfy energy deposition isolation
 - shower shape consistent with photon
 - ightarrow di-EM identification efficiency 85.9% (from Z
 ightarrow ee)
 - E_T > 20 GeV
 - electron veto: no matching track (94.2% efficient)
 - track isolation in hollow cone around EM object (\sum track $p_T < 2$ GeV)
- \updownarrow \rlap/E_{T} corrected for EM and jet energy scales

Standard Model backgrounds

- \bigstar Backgrounds with $\rlap/{E}_{\mathsf{T}}$ due to mismeasurement:
 - mostly QCD with direct photons or jets misidentified as photons
 - Drell-Yan, with electrons misreconstructed as photons due to tracking inefficiency
- \Rightarrow Backgrounds with true \rlap/E_T :
 - dominant: $W\gamma \to e\nu\gamma$ (missed track) and $W{\rm jet} \to e\nu$ " γ " (jet mis-id'ed as photon)
 - $Z \to \tau \tau \to ee + X$
 - $t\bar{t}$, WW, WZ, etc.

Background: QCD sample

- ightharpoonup Used to estimate background without true $\rlap/E_{\rm T}$ (accounts for Drell-Yan)
- Same data sample and analysis cuts, but photon candidates are required to fail the shower shape cut
- $2 \not \!\!\!\!/ E_T$ shape measured in this sample
- ightharpoonup Normalization to diphoton sample done in $\rlap/E_{\rm T}$ < 15 GeV bin


Background: $e\gamma$ sample

- ☆ Electron background estimation
- Same sample and cuts as diphoton, except one EM object has a track match and electron track isolation
- Remove QCD contribution (same method as for diphoton)
- Multiply number of observed $e\gamma$ by the ratio $(1-\epsilon_{\rm trk})/\epsilon_{\rm trk}$ (where $\epsilon_{\rm trk}$ is the track matching efficiency) of probabilities for an electron to be mis-id'ed as a photon or identified as an electron

$\rlap/\!\!E_{T}$	> 30 GeV	> 40 GeV	> 50 GeV
$\gamma\gamma$ events	4	1	0
QCD	5.2 ± 0.7	2.1 ± 0.4	1.2 ± 0.3
$e\gamma$	0.9 ± 0.2	0.4 ± 0.1	0.1 ± 0.1
Total BG	6.1 ± 0.7	2.5 ± 0.5	1.3 ± 0.3

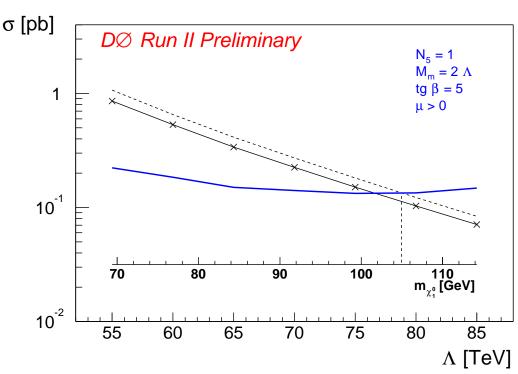
Signal simulation

- Sparticles mass spectrum and branching fractions from ISAJET v7.58
- Total leading order cross section and event generation from PYTHIA v6.202
- K-factors for next-to-leading order cross sections from Beenakker *et al* Phys. Rev. Lett. **83**, 3780 (1999)
- ☆ Full detector simulation
- Signal considered: $M_m=$ 2 Λ $\stackrel{>}{\sim}$ 120 $N_5=$ 1, an eta= 5, $\mu>$ 0 $\stackrel{\checkmark}{\sim}$ 100
- ∴ Optimize for significance
 ⇒ optimal cut \rlap/E_T > 40 GeV

Limit calculation

- $\ref{harmonical}$ No excess observed in $\rlap/E_{\sf T}$ distribution: observed 1, expected 2.5 \pm 0.5
- \Rightarrow Set limit on Λ using Bayesian approach:

 $\Lambda >$ 78.8 TeV at 95% C.L.


or, in terms of gaugino masses:

$$m_{{ ilde \chi}_1^0} >$$
 105 GeV and

$$m_{ ilde{\chi}_1^\pm} >$$
 192 GeV

World's best limits

in this class of model

CDF preliminary result (202 pb $^{-1}$ and aneta= 15): $\Lambda>$ 69 TeV, $m_{{ ilde\chi}_1^0}>$ 93 GeV, $m_{{ ilde\chi}_1^\pm}>$ 168 GeV

Summary and outlook

- DØ has searched for diphoton events with large missing transverse energy
- No evidence for GMSB signal but...
- New limits were set, most stringent to date for this class of models
- ☆ Outlook
 - already much more data available and more is coming
 - good prospects for new analyses with exclusive final states
 - photon pointing using high calorimeter segmentation. Use preshower information for non-pointing photons (due to finite $\tilde{\chi}^0_1$ lifetime)
 - use other model parameters (including Snowmass model line)